• Home
  • Research
    • Molting
    • Spermatogenesis
    • Tool development
    • Past research
  • People
  • Publications
  • Methods & protocols
    • Biochemistry
    • C. elegans
    • Molecular biology
    • pha-1 co-conversion >
      • Strain maintenance
      • cku-80 RNAi
      • Construct and oligo design
      • Generation of PU6::sgRNA templates by PCR fusion
      • Injections
      • FAQs
  • Positions
  • Resources and links
    • Meeting slides >
      • 2017 Worm meeting
      • 2019 Worm meeting
    • K99 grant writing
  • Contact us
  • Blog
  The Ward lab at UC Santa Cruz

Probing C. elegans development, cellular differentiation, and parasitic disease

visit our UCSC page
​Nestled in the redwoods of the stunning UC Santa Cruz campus, we are interested in how the remarkable complexity and noise of gene regulation is converted into the beautiful and precise cellular behaviors that drive animal development. We use genetics, molecular biology, microscopy, in vitro biochemistry, and genomics to study how individual, evolutionarily conserved transcription factors regulate distinct gene expression programs controlling cell division and differentiation and organ development in living animals. We focus on transcription factor regulation of two cellular processes: i) the nematode molt, which is the shedding of the old skin (cuticle) and generation of a new one; and ii) spermatogenesis. By extending our findings into the human parasitic nematode Brugia malayi, which causes the disfiguring disease lymphatic filariasis, we aim to understand how gene regulatory networks evolve in the context of a parasitic life cycle. We are motivated by the public health implications of this work: parasitic nematodes infect over 1.5 billion people globally and also threaten food availability by infecting crops and livestock. There are a small number of drugs currently available to fight parasitic nematode infections, so novel approaches are desperately needed. Molting is a good target as it is essential, involves nematode-specific molecules, and is regulated by many druggable targets (proteases, nuclear hormone receptors, etc.). By characterizing key developmental processes in parasites, we aim to develop new approaches to combat helminthic infections. 
Picture
Creator: Sammy Katta
This work is licensed under a 
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Some graphics adapted with permission from the Library of Science and Medical Illustrations by Luk Cox and Idoya Lahortiga.
Powered by Create your own unique website with customizable templates.